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On Discrete-time Pursuit-evasion Games
with Sensing Limitations

I. I NTRODUCTION

The game of pursuit can be posed as to determine a strategy
for a pursuer (a team of pursuers) to capture an evader in a
given environment. Bycapture, we mean that the evader and
the pursuer (some pursuer) meet at the same location after a
finite time. The aim of the pursuer (pursuers) is to capture the
evader for any evader trajectory. The evader wins the game if
it can avoid capture indefinitely. All the players have identical
motion capabilities. Capture strategies are important in surveil-
lance where we would like to detect and capture equally agile
intruders. Another application is search-and-rescue operations
where a worst-case capture strategy guarantees a rescue, in
spite of any unpredictable motion of the victim.

The continuous time version of this game has been studied
in [1], [2] and [3] to cite a few. Recently, the discrete-time
version of the game has received significant attention. [4]
describes sufficient conditions and a strategy for a single
pursuer to capture an evader in a semi-open environment.
This strategy has been extended in [5] to the case of multiple
pursuers in an unbounded environment, to capture a single
evader which is inside their convex hull. [6] and [7] describe
pursuer strategies of moving towards, and towards the previous
positions of the evader respectively, so that the distance to
the evader is reduced to a finite, non-zero amount in finite
time. The game has also been studied in different types of
bounded environments, e.g., circular environment [6], curved
environments [8]. Visibility-based pursuit evasion has been
studied in a continuous-time setting in [9] and in polygonal
environments in a discrete-time setting in [10].

In the context of sensing limitations, in continuous time
formulations, [11] deals with a version of visibility limited to
an angle, instead of the entire region. [12] considers a suc-
cessive pursuit of multiple evaders by a single faster pursuer
in the plane with sensing range limited to a finite disc. [13]
proposes a multi-phase pursuit strategy for groups of pursuers
with limited range sensing and have demonstrated its capture
properties in bounded environments via simulation without
formal proof. In discrete time formulations, [14] considers the
problem on a graph, with the visibility of the pursuer limited to
nodes adjacent to the current node of a pursuer. A framework
which uses probabilistic models for sensing devices for the
agents is described in [15] and [16].

We address the case of limited range sensing capability:
a pursuer and an evader can sense each other only if the
distance between them is less than or equal to a given sensing
radius. We consider the discrete-time version with one or many
pursuers and a single evader in a planar environment. The
motion of each player is constrained to a stepping disc around
it. The evader is initially located inside a bounded subset of

the environment, which we term as thefield. The players can
leave the field but not the environment. The evader follows
a reactive rabbitmodel, i.e., does not move until it senses a
pursuer [14]. We present an algorithmic approach in the form
of a Sweep-Pursuit-Capturestrategy for the pursuer to capture
the evader. We demonstrate this strategy using two variantsof
the pursuit-evasion game: the first involves a single pursuer
and the evader in a bounded convex environment while the
second considers multiple cooperating pursuers to capturethe
evader in a boundaryless environment.

In the first game, the pursuersweepsthe environment in a
definite path until the evader is sensed, which must necessarily
happen in finite time. This is analogous to the spanning-tree
based coverage presented in [17]. We then establish how a
GREEDY strategy of moving towards thelast-sensedlocation
of the evader, eventually reduces the present problem to a
previously-studied one with unlimited sensing. The convexity
assumption on the environment is required because otherwise,
due to the limited sensing range, there exist environments
similar to those considered in [10] and an evader strategy,
such that the evader does not get detected again. Finally, we
show how capture is achieved using the established LION

strategy [4]. Our contributions are as follows: First, we present
an analysis which provides a novel upper bound on the time
required for the pursuit phase to terminate. This bound is an
improvement compared to our earlier work [18]. Second, we
obtain a sufficient condition on the ratio of sensing to stepping
radius of the players for capture to take place in a given
environment. Finally, we show that this condition is tight in
the sense that if it is violated, then there exist sufficiently large
environments, an evader strategy and initial positions forthe
players, that lead to evasion against the GREEDY strategy.

The second game is played with at least five cooperative pur-
suers in a boundaryless environment and the field is a bounded
region known to the pursuers. Our contributions are as follows:
First, we design a novel pursuer formation and a randomized
SWEEP strategy for the pursuers to search the field. They
succeedwhen they detect the evader inside a specialcapture
region, which we characterize for the pursuer formation. We
show that using our SWEEP strategy, the pursuers succeed
with a certain probability which is a function of the pursuer
formation and independent of the initial evader location. Next,
we propose a cooperative pursuit strategy for the pursuers to
confine the evader within their sensing discs. We show that
using this pursuit strategy, the present problem is reducedto
a previously-studied one with unlimited sensing. Finally,we
show how capture is achieved using the established PLANES

strategy [5]. We obtain novel upper bounds on the time for
each phase in our strategy, which is an improvement compared
to our earlier work [19]. Also, we present a simulation-based
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study of the performance of the strategies under sensing errors,
different ratios of sensing to stepping radius, greater evader
speed and different number of pursuers.

The inspiration for the cooperative strategy proposed in
this paper has been derived from aspects of animal behavior.
It is well known that predators hunt as a conjoined group,
when it is less efficient to hunt alone. This behavior is also
observed when the prey is large or can move as fast as the
predators [20]. Further, predators show an inclination towards
specialized behavior by maintaining a fixed formation during
search and capture of preys [21]. Such specializations suggest
that there may be configurations that are preferred during
group hunting. Also, in the presence of sensing limitations,
groups tend to maintain spacing between each other that is
regulated by their sensory capabilities [22]. These facts give us
additional hints towards designing capture-conducive predator
formations. In this context, our analysis sheds light on how
the maximum group size of the predators varies with prey
availability and with the prey’s nutrition value in the present
set-up.

The paper is organized as follows: the problem’s mathe-
matical model and assumptions are presented in Section II.
The individual phases of thesweep-pursuit-capturestrategies
and the corresponding main results for both the problems
are presented in Section III. The proofs of the results are
presented in Section IV. Simulation results are presented in
Section V. Finally, in Section VI, we study the relationship
between pursuer group sizes and evader availability and its
nutrition value in our set-up.

II. PROBLEM SET-UP

We assume a discrete-time model with alternate motion
of the evader and the pursuers: the evader moving first. We
assume that the players can sense each other precisely only if
the distance between them is less than or equal to the sensing
radiusrsens. Further, we assume that at each time instant, the
players take measurements of each other before and after the
evader’s move, as shown in Figure 1. DefineQφ := Q ∪ φ,
whereQ ⊆ R

2 denotes the environment andφ is the null
element. The null element will be used to denote a lack of
measurement in our limited range sensing model. LetG ⊂ Q
denote the field, i.e., the region that initially contains the
evader. The evader follows areactive rabbitmodel - moves
only after being detected for the first time. We assume that the
pursuers know the fieldG and the environmentQ. The goal of
the pursuer(s) is tocapturethe evader, i.e., a pursuer and the
evader are at the same position at some finite time.Evasion
is said to occur if the pursuer cannot capture the evader. We
describe theSweep-Pursuit-Capturestrategy for the following
problems:

A. Single pursuer problem

We have a bounded convex environmentQ ⊂ R
2 and the

field G = Q. Let e[t] andp[t] denote the absolute positions of
the evader and the pursuer respectively, at timet ∈ Z≥0. The

Players measurePlayers measure

cf. (3), (5)

At time τ ≥ 1

Evader:ye
bef[τ ]

Pursuer:yp
aft[τ ] Pursuer:yp

aft[τ ]

Evader moves toe[τ ] Pursuer moves top[τ ]

Evader:ye
aft[τ ]

cf. (2), (4)

Fig. 1. A snapshot of each time instantτ ∈ {1, 2, . . . } in our alternate
motion model. The players take measurements before and after the evader’s
move.

discrete-time equations of motion are

e[t] = e[t − 1] + ue
(

e[t − 1], {ye
bef[τ ]}t

τ=1, {ye
aft[τ ]}t−1

τ=1

)

,

p[t] = p[t − 1] + up
(

p[t − 1], {yp
bef[τ ]}t

τ=1, {yp
aft[τ ]}t

τ=1

)

,

(1)

where at theτ th time instant, ye
bef[τ ], ye

aft[τ ] ∈ Qφ are
the measurements of the pursuer’s position taken by the
evader before and after theevader’s move, as shown in
Figure 1. The parentheses notation{yp

bef[τ ]}t
τ=1 denotes the

set {yp
bef[1], yp

bef[2], . . . , yp
bef[t]}. Due to limited range sensing

model, forτ ∈ {1, . . . , t}, we define

ye
bef[τ ] =

{

p[τ − 1], if ‖p[τ − 1] − e[τ − 1]‖ ≤ rsens,

φ, otherwise.
(2)

For notational convenience, we define{yp
aft[τ ]}t−1

τ=1 = φ for
the initial time t = 1. For t ≥ 2 and for τ ∈ {1, . . . , t − 1},
we have

ye
aft[τ ] =

{

p[τ − 1], if ‖p[τ − 1] − e[τ ]‖ ≤ rsens,

φ, otherwise.
(3)

Similarly, at the τ th time instant , yp
bef[τ ], yp

aft[τ ] ∈ Qφ

are the measurements of the evader’s position taken by the
pursuer before and after theevader’smove respectively, as
shown in Figure 1. Due to limited range sensing model, for
τ ∈ {1, . . . , t}, we have

yp
bef[τ ] =

{

e[τ − 1], if ‖e[τ − 1] − p[τ − 1]‖ ≤ rsens,

φ, otherwise.

(4)

For τ ∈ {1, . . . , t}, we have

yp
aft[τ ] =

{

e[τ ], if ‖e[τ ] − p[τ − 1]‖ ≤ rsens,

φ, otherwise.
(5)

The functionsue : Q × Qφ × · · · × Qφ
︸ ︷︷ ︸

2t − 1 times

→ Q and up :

Q × Qφ × · · · × Qφ
︸ ︷︷ ︸

2t times

→ Q are termed asstrategiesfor the

evader and pursuer respectively. The apparent lack of symme-
try between the number of arguments in the strategies of the
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evader and the pursuer is due to the alternate motion model.
We assume that both players can move with a maximum step
size ofrstep, that is,

‖ue‖ ≤ rstep, ‖up‖ ≤ rstep. (6)

The sensing radius,rsens, is κ times the motion radius,rstep. We
assumeκ is greater than 1, i.e., both players can sense further
than they can move. From the reactive rabbit model for the
evader, we haveue = 0 until the evader is detected. After this
happens, the single pursuer problem consists ofdetermining
up that guarantees capture for any evader strategy,ue. This
problem is described by two key parameters: the ratio of
sensing to stepping radiusκ and the ratio of the diameter of
the environment to the stepping radiusdiam(Q)

rstep
.

B. Multiple pursuer problem

We have a total ofN ≥ 5 pursuers that can communicate
among themselves the location of a sensed evader as well as
their own position with respect to a fixed, global reference
frame. The environmentQ is R

2 and the fieldG is a bounded
subset ofR2. Define R

2
φ := R

2 ∪ φ. Let pj [t] denote the
absolute positions of thejth pursuer at timet for every j ∈
{1, . . . , N}. Analogous to (1), the discrete-time equations of
motion are

e[t] = e[t − 1] + ue
(

e[t − 1], {ye
bef[τ ]}t

τ=1, {ye
aft[τ ]}t−1

τ=1

)

,

pj [t] = pj [t − 1]

+ upj

({

{pj[τ ]}N
j=1

}t−1

τ=1
,
{
yp

bef[τ ]
}t

τ=1
,
{
yp

aft[τ ]
}t

τ=1

)

,

(7)

where at theτ th time instant,ye
bef[τ ], ye

aft[τ ] ∈ R
2
φ × · · · × R

2
φ

︸ ︷︷ ︸

N times
denote the sets of measurements of the pursuers’ positions
taken by the evader before and after its move. Similarly,
yp

bef[τ ], yp
aft[τ ] ∈ R

2
φ are the measurements of the evader’s

position taken by the pursuers before and after the evader’s
move. The measurements are given by expressions analogous
to (2)-(5). Akin to the single pursuer problem, the functions
ue : R

2 × R
2
φ × · · · × R

2
φ

︸ ︷︷ ︸

(2t − 1)N times

→ R
2 and upj : R

2
φ × · · · × R

2
φ

︸ ︷︷ ︸

(t − 1)N times

×

R
2
φ × · · · × R

2
φ

︸ ︷︷ ︸

2t times

→ R
2 for everyj ∈ {1, . . . , N}, are strategies

for the evader and pursuers respectively. The constraint onthe
maximum step size, given by (6), holds for the evader and
every pursuer. Due to the reactive rabbit model for the evader,
ue = 0 until it is detected by the pursuers for the first time.

The multiple pursuer problem consists ofdesigning a pur-
suer formation and a corresponding strategy that guarantees
capture of the evader. This problem is described by the
following key parameters: the ratio of sensing to stepping
radius of the playersκ, the ratio of the diameter of the field
to the stepping radiusdiam(G)

rstep
, and the number of pursuersN .

III. T HE SWEEP-PURSUIT-CAPTURE STRATEGIES AND

MAIN RESULTS

In this section, we describe the Sweep-Pursuit-Capture
strategies for both the problems and the corresponding main
results. The proofs are presented in Section IV.

We first introduce the following weak notion of capture.

Definition III.1 (Trap) The evader istrapped within the
sensing radius (resp. radii)of the pursuer (resp. pursuers) if
for any evader strategyue, the motion disc of the evader is
completely contained within the sensing disc of the pursuer
(resp. union of the sensing discs of the pursuers) after a finite
time.

To be specific, the evader is trapped at time instantTtrap if
for any evader strategy,

yp
bef[Ttrap] = e[Ttrap− 1], and yp

aft[Ttrap] = e[Ttrap].

The idea behind our Sweep-Pursuit-Capture strategies is to
detect the evader and pursue it so as to trap it. Next, we show
that the evader remains trapped for all subsequent time instants
and that the pursuers achieve capture by using strategies that
were developed for the unlimited range sensing version of the
game. This principle applies to both versions of the problem.

A. Single pursuer problem

We first present each phase of the strategy for the single
pursuer problem.

1) Sweep phase -SWEEPstrategy:Let diam(Q) denote the
diameter ofQ. The SWEEPstrategy for the pursuer is to move
with maximum step size along a path, as shown in Figure 2
such that the union of the sensing discs of the pursuer at the
end of each step until the end of this phase containsQ. We
term such a path asweeping pathfor Q. Let tsweepdenote the
time taken for this strategy to terminate. We have the following
result.

Lemma III.2 (S WEEP strategy) In the single pursuer prob-
lem with parametersκ and diam(Q)

rstep
, the timetsweep taken by

the SWEEP is at most
⌈

diam(Q)
2κrstep

⌉ (⌈
diam(Q)

rstep

⌉

+ ⌈κ⌉
)

steps.

p

diam(Q)

Fig. 2. A sweeping path to detect the evader in the Single pursuer problem
using the SWEEP strategy.
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2) Pursuit phase -GREEDY strategy: Once the evader is
detected, the GREEDY strategy for the pursuer is tomove
towards the last sensed position of the evader with maximum
step size. This strategy has the property that the pursuer senses
the evader’s position at every successive time instant. Letttrap

denote thetrapping time, i.e., the time taken by the pursuer
to trap the evader after detecting it. We now present our main
result for the GREEDY strategy.

Theorem III.3 (G REEDY strategy) In the single pursuer
problem with parametersκ and diam(Q)

rstep
, if κ >

√
2 + 2 cosβc,

where

βc :=

√
3

4κ

⌈
diam(Q)

2κrstep

⌉−1

arctan
1

8κ
, (8)

then theGREEDY strategyhas the following properties:

(i) the pursuer traps the evader within its sensing radius,
and

(ii) the trapping timettrap satisfies

ttrap ≤















log

(√
κ2−sin2 βc−cos βc−1

κ−1

)

log(1 − 1−cos βc

κ )









+ 1







⌈
diam(Q)

2κrstep

⌉

.

(9)
Furthermore, if κ > 2, then as(diam(Q)/rstep) → +∞,

ttrap ∈ O
(

(diam(Q)/rstep)
3
)

.

Theorem III.3 is tight in the sense that if the condition on
κ is violated then there exist sufficiently large environments,
an evader strategy and initial positions for the players, that
lead to evasion against the GREEDY pursuer strategy. This is
described by the following result.

Proposition III.4 (Evasion) Given a single pursuer problem
with parametersκ and diam(Q)

rstep
such thatκ ≤ √

2 + 2 cosβc,
whereβc is given by(8), and Q contains a circle of radius

rstep√
4−κ2

, then there exist an evasion strategy and initial posi-
tions of the players for which the pursuer’sGREEDY strategy
fails to trap the evader.

Figure 3 illustrates this evasion strategy under the conditions
required by Proposition III.4.

e[t + 1]

ρ

Ω

e[t]

p[t]

Fig. 3. Illustrating evasion. The dotted circles are the player’s motion discs
and the solid circle is the pursuer’s sensing disc.e[t] and p[t] are on the
circle Ω described in Proposition III.4 such that‖e[t]− p[t]‖ = rstep. Evader
chooses to move toe[t + 1] on Ω with full step size.

3) Capture phase -L ION strategy: Once the evader is
trapped within the sensing range of the pursuer, the pursuer
employs the LION strategy from [4] to complete the capture.
For the sake of completeness, we now give a brief description
of the LION strategy, adapted to the present problem setting.

The LION strategy can be applied to this phase as follows:

(i) Prior to its (t + 1)th move, the pursuer constructs the
line e[t]p[t], as shown in Figure 4. Let this line intersect
the boundary of the environment at a pointX [t] such
that p[t] lies betweene[t] andX [t].

(ii) The pursuer then also constructs the linee[t + 1]X [t]
and moves to the intersection of this line with the circle
centered atp[t] and of radiusrstep. Of the two possible
intersection points, the pursuer selects the one closer to
e[t + 1].

X [t](≡ X [tsweep+ ttrap])

Q

e[t]

p[t + 1]e[t + 1]

p[t]

Fig. 4. Single pursuer problem: Using the LION strategy to capture the
evader. The dotted circles represent the motion discs of theplayers.

This construction guarantees that the intersection pointX [t]
remains the same as the pointX [tsweep+ ttrap], for everyt ≥
tsweep+ ttrap, wheretsweep+ ttrap is the time at the end of the
pursuit phase. Denoting bytcap the time taken by the pursuer
to capture the evader after trapping it, we have the following
result.

Theorem III.5 (L ION strategy [4]) In the single pursuer
problem with parametersκ and diam(Q)

rstep
, after trapping the

evader within the sensing radius and using theLion strategy,

(i) the distance,‖p[t] − e[t]‖, is a non-increasing function
of time,

(ii) the pursuer captures the evader,

(iii) tcap is at most

⌈(
diam(Q)

rstep

)2
⌉

steps.

Thus, our problem with limited sensing is solved because
once the evader is trapped within the pursuer’s sensing radius,
it remains trapped until capture, from part (i) of Theorem III.5.
We have also obtained an upper bound on the total time to
capture, i.e.,tsweep+ ttrap + tcap.

B. Multiple pursuer problem

This section describes the sweep-pursuit-capture strategy for
multiple pursuers and the corresponding results. We assume
thatκ ≥ 4 andN ≥ 5. We define the following formation for
multiple pursuers.

Definition III.6 (Trapping chain) A group of N ≥ 5 pur-
suers{p1, . . . , pN} are said to be in atrapping chainforma-
tion if
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(i) p2, . . . , pN−1 are placed counterclockwise on a semi-
circle with diameter equal to‖p2 − pN−1‖,

(ii) for all j ∈ {1, . . . , N − 1}

‖pj − pj+1‖ = rstep

√

4κ2 − 25,

and
(iii) p1, p2, pN−1, pN are on the vertices of a rectangle such

that the polygon with vertices{p1, . . . , pN}, in that
order, is convex (cf. Figure 5).

p4

p6

p7

p8 p9

l

p3

p2 p1

p5

Fig. 5. A trapping chain formation forN = 9 pursuers. The circles around
the pursuers denote their sensing ranges. The lightly shaded region denotes
the capture region and the darkly shaded region along with the lightly shaded
one denotes the extended capture region.

We now describe the Sweep-Pursuit-Capture strategy for the
multiple pursuer problem.

1) Sweep phase -SWEEP strategy: The pursuers begin by
placing themselves in a trapping chain formation. We define
the capture regionS for a trapping chain by

S =
⋃

j∈{3,...,N−2}
Bpj

(rsens) ∩ C̊o{p2, . . . , pN−1},

whereBpj
(rsens) ⊂ R

2 denotes the sensing disc of pursuer
pj and C̊o{p2, . . . , pN−1} ⊂ R

2 denotes the interior of the
convex hull of{p2, . . . , pN−1}. The lightly shaded region in
Figure 5 is the proposed capture region,S, for the trapping
chain. In the sweep phase, pursuers wish to detect the evader
within the capture region. We consider a square region of
length equal to diameter of the regionG, diam(G) that contains
the field G. The pursuers sweep this square region in the
direction of the normal top1pN , outward with respect to the
convex hull of the pursuers. For a trapping chain shown in
Figure 5, we define theeffectivelength l as

l := ‖p1 − pN‖ − 2rsens= rstep

( √
4κ2 − 25

sin( π
2(N−3) )

− 2κ

)

. (10)

As the pursuers move in the direction described earlier, they
clear a rectangular strip of lengthdiam(G) and widthl+4rsens.
The SWEEP strategy for the pursuers is as follows.

(i) Choose the first rectangular strip at a random distance
l0 from one edge of the square region containingG
and sweep it length-wise. The distancel0 is a uni-
form random variable taking values in the interval
[−2rsens, l + 2rsens]. Here, negativel0 implies that some
of the pursuers may begin sweeping from outside the
regionG.

(ii) Form a sweeping path for the square region and sweep
along adjacent strips as shown in Figure 6.

The shaded region in Figure 6 refers to the area that would fall
in the proposed capture regionS. Now we are interested in
determining the probability that an evader falls in the shaded
region in Figure 6. That is given by the following result.

l

l0

diam(G)

2rsens

Fig. 6. Multiple pursuer problem: SWEEP strategy. The shaded region
represents the region swept by the capture region of the trapping chain.

Theorem III.7 (SWEEP strategy) In the multiple pursuer
problem with parametersκ, diam(G)

rstep
and N , for any prob-

ability distribution for the initial position of the evaderwith
support onG, using theSWEEP strategy,

(i) the probabilityP of detecting the evader insideS for a
group of pursuers in a trapping chain, satisfies

P ≥ l

l + 4rsens
≥ 1 − 2πκ

(√
4κ2 − 25(N − 3) + 2πκ

) ,

and
(ii) the timetsweeptaken by theSWEEP strategy to terminate

satisfies

tsweep≤
⌈diam(G)

rstep

( π/2√
4κ2 − 25(N − 3) + πκ

)⌉

×
⌈diam(G)

rstep
+ 2
√

4κ2 − 25N
⌉

.

Remark III.8 The minimum probabilityP of the pursuers
detecting the evader inside the capture region by using the
SWEEP strategy isindependentof the evader’s location inG.
This means that the best that the evader can do in the present
framework is to locate itself initially with a uniform probability
in G.

We shall see that the pursuers win when the evader is
detected inS by the pursuers. Otherwise, there exists a path for
the evader such that it can avoid being captured indefinitely.

2) Pursuit phase -CIRCUMCENTER strategy: If the evader
is detected within the proposed capture region at timetsweep,
the pursuers need to ensure that they trap the evader within
their sensing ranges. Before we describe the strategy for the
pursuit phase, consider the following possibility: if the evader
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steps into the darkly shaded region of the sensing range of
p2 (or of pN−1), thenp2 (resp.pN−1) can use the GREEDY

strategy (ref. Section III-A2). By moving towards the evader,
the evader’s motion disc gets contained inside that pursuer’s
sensing disc and thus the evader gets trapped. This motivates
us to define anextended capture regionSe for the trapping
chain by

Se =
⋃

j∈{2,...,N−1}
Bpj

(rsens) ∩ C̊o{p2, . . . , pN−1}.

The darkly shaded region along with the lightly shaded region
in Figure 5 is the extended capture regionSe for the trapping
chain.

We now present the following pursuit strategy. At each time
stept ≥ tsweep,

(i) While e[t+1] /∈ Se[t], the pursuersp2, . . . , pN−1 move
towards thecircumcenter1 O of the triangle formed by
p2[tsweep], e[tsweep] andpN−1[tsweep] with maximum step.
Pursuersp1 and pN move parallel top2 and pN−1

respectively.
(ii) Otherwise, one of the pursuers which senses the evader

directly, makes a GREEDY move (ref. Section III-A2)
towards the evader and the others move parallel to that
pursuer with the maximum step.

One such move is shown in Figure 7. In case (i) of the
strategy, note that the pursuers may not sense the evader in
every subsequent move. But they will encircle the evader by
“closing” the trapping chain around it and then shrink the
enclosed region around the evader. We thus have the following
result.

p5[tsweep]

e[tsweep]

p1[tsweep]p2[tsweep]

p3[tsweep]

p6[tsweep]

p7[tsweep]

p8[tsweep] p9[tsweep]

p4[tsweep]

O

Fig. 7. Multiple pursuer problem: CIRCUMCENTERstrategy. At timetsweep,
the evader position is sensed byp4. Pursuersp2, . . . , p8 move towards O, the
circumcenter of triangle formed byp2, e andp8. p1 andp9 move parallel to
p2 andp8 respectively. The circles around the pursuers represent their sensing
discs.

Theorem III.9 (C IRCUMCENTER strategy) In the multiple
pursuer problem with parametersκ, diam(G)

rstep
and N , starting

from a trapping chain formation, if the evader is detected with
e[tsweep] ∈ S[tsweep], then using theCIRCUMCENTER strategy,

(i) the pursuers trap the evader within their sensing radii,

1The circumcenter of a triangle is the unique point in the plane which is
equidistant from all of its three vertices.

(ii) the trapping timettrap satisfies

ttrap ≤
√

4κ2 − 25N
(

1 +
1

2 sinφ

)

,

where

φ(κ) =
π

4
− arctan

( κ√
3κ2 − 25

)

,

and
(iii) at that time, the evader is inside the pursuers’ convex

hull in such a way that

B rstep
2

(e[tsweep+ ttrap]) ⊂ Co{p1, . . . , pN}[tsweep+ ttrap].
(11)

The CIRCUMCENTER strategy guarantees trapping of the
evader even without pursuersp1 andpN . But in that case, the
inclusion in (11), which will be required to establish an upper
bound on the time for the capture phase that follows, is not
guaranteed.

3) The Capture phase -PLANES strategy: Once the evader
is trapped within the sensing ranges of the pursuers, the
pursuers use the PLANES strategy from [5] to capture the
evader. Before stating our results, we reproduce this strategy
for completeness.

Let the time at the end of the pursuit phase betsweep+ ttrap

and the evader be inside the convex hull of the pursuers as
in (11) (cf. Figure 8). Fort ≥ tsweep+ ttrap and for every
pursuerpj :

• Draw the linehj [t + 1] throughe[t + 1], parallel to the
line joining e[t] andpj [t], as shown in Figure 9.

• Move to the point closest toe[t+1] on the linehj [t+1]
with maximum step size.

e

p2

p1
p4

p3

Fig. 8. Multiple pursuer problem: evader trapped inside pursuers’ convex
hull.

pj[t + 1]

pj[t]

e[t]

e[t + 1]

hj[t + 1]

Fig. 9. Multiple pursuer problem: PLANES strategy. Draw the linehj [t+1]
throughe[t+1], parallel to the line segmente[t]pj[t] and move onto it closest
to the evader.

Theorem III.9 shows that use of the CIRCUMCENTER strat-
egy in the pursuit phase leads to the evader being trapped and
inside the convex hull of the pursuers. Now capture follows
from the following theorem, which was partly inspired by the
results on the PLANES strategy in [5].

Theorem III.10 (PLANES strategy) In the multiple pursuer
problem with parametersκ, diam(G)

rstep
and N , let the evader
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be trapped inside the convex hull of the pursuers such that
property(11) is satisfied. If every pursuer follows thePLANES

strategy, then

(i) the distances,‖pj[t] − e[t]‖ for everyj ∈ {1, . . . , N},
are non-increasing functions of time,

(ii) the pursuers capture the evader and
(iii) the time tcap taken in the capture phase is at most

18κ
√

4κ2 − 25N .

Item (i) of Theorem III.10 implies that once the evader is
trapped within the sensing ranges of the pursuers, it remains
trapped within their sensing ranges at the end of every pursuer
move. The capture is now complete and we obtained a novel
upper bound on the total time to capture, i.e.,tsweep+ttrap+tcap.

IV. PROOFS OF THERESULTS

In this section, we formally prove the main results.

A. Single pursuer problem

Proof of Lemma III.2:To determine an upper bound fortsweep,
consider placingQ inside a square region of lengthdiam(Q)
and the pursuer moving along a hypothetical sweeping path for
the square region, as shown in Figure 10. It is straightforward
to show that to achieve coverage, this hypothetical sweeping
path is between strips of width2κrstep, parallel to the side.

selection of width for the There are
⌈

diam(Q)
2κrstep

⌉

such strips

and it takes at most
⌈

diam(Q)
rstep

⌉

+ ⌈κ⌉ steps to sweep one strip
completely and be positioned to sweep through a neighboring
strip of this hypothetical sweeping path.

diam(Q)

p 2κrstep

Fig. 10. A hypothetical sweeping path to determine upper bound on number
of steps to detect the evader.

To prove Theorem III.3, we need some preliminary defi-
nitions and results which we present now. In what follows,
the notation∠ABC refers to the smaller of the two angles
between segmentsAB andBC.

Definition IV.1 (Deviation and evasion angles)Given
evader and pursuer at positionse[τ ], p[τ ], for τ ∈ {t, t + 1},
define thedeviation angleα[t] and the evasion angleβ[t] by:

α[t] := ∠e[t + 1]p[t + 1]e[t],

β[t] := α[t] + ∠p[t + 1]e[t + 1]e[t].

These angles are illustrated in Figure 11. The following result
follows trivially.

Proposition IV.2 When the pursuer uses theGREEDY strat-
egy, for every instant of timet,

|β[t]| ≥ |α[t]|. (12)

Note that equality in (12) only holds when the evader moves
away from the pursuer along the linep[t]e[t].

s[t + 1]

s[t]
p[t + 1]

α[t]

e[t + 1]

β[t]

e[t]

rstep
rstep

p[t]

Fig. 11. Relation between the deviation angleα[t] and the evasion angle
β[t]. The dotted circles represent the motion discs of the players. The circle
centered atp[t] (shown partially here) is the pursuer’s sensing range.

It can be deduced that when the pursuer employs the
GREEDY strategy, the distance between the pursuer and evader
is a non-increasing function of time. We now define a geomet-
ric construction which is useful in the proof.

Definition IV.3 (Cone sector sequence)Let t0 denote the
time at the end of the sweep phase. Given a time instant
k ∈ Z≥0, the sequenceCk of cone sectorsCk,i for i ∈ Z≥0 is
defined as follows:

(i) Define the cone sectorCk,0 with p[tk] as its vertex, angle
bisector defined by the segmente[tk]p[tk] and extended to
a pointX beyonde[tk] such thatLcone := ‖p[tk]−X‖ =
2κrstep, as shown in Figure 12. Let the segmentY Z be of
length rstep

2 and perpendicular to the segmentp[tk]X with
X as its midpoint. Accordingly, letθ := ∠Y p[tk]Z =
2 arctan(1/8κ) be thecone angle.

(ii) For k, i ≥ 0, denote byt∗ the time when the evader
leaves the cone sectorCk,i. There are two possibilities:
(a) the pursuer first constructs a new cone sectorCk,i+1

which is a translation ofCk,i having vertex atp[t∗]. This
is illustrated in Figure 13.
(b) If the evader is not insideCk,i+1, then we denote
tk+1 := t∗. The pursuer constructs a new cone sector
sequenceCk+1.

The cone sector sequence described above has the following
property.

Proposition IV.4 (Cone sector sequence)Given a cone sec-
tor sequenceCk, the maximum number of stepsN∗ for which
the evader can remain inside it without being captured satisfies

N∗ =
4κ√

3

⌈
diam(Q)

2κrstep

⌉

. (13)

Proof: We compute an upper bound on the number of
steps a pursuer stays in any cone sector while using the
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Lcone := 2κrstep

e[t0]
X

rstep

2
Y

Z

p[t0]
θ

Fig. 12. Construction of coneC0,0. ChooseX on the linee[t0]p[t0] such
that ‖p[t0] − X‖ = 2κrstep. Y Z has length

rstep
2

and is perpendicular to
segmentp[t0]X with X as its midpoint.θ is the cone angle.

Ck,i+1
p

e

Ck,i

p′
e′

Fig. 13. Construction of cone sectorCk,i+1. Translate cone sectorCk,i to
have its vertex atp′.

GREEDY strategy. From the definition of a cone sector, this is
also an upper bound on the number of steps the evader can
remain inside a cone sector. Construct a rectangle with length
Lcone and width rstep

2 such that it contains a cone sector, as
shown in Figure 14. Orient a frame of reference such that its
X axis is parallel to the angle bisector of the cone sector. Let
p[tk]−P1−· · ·−P5 denote the path as a result of the pursuer’s
GREEDY strategy while in the cone sectorCk,0.

We now construct a path with step size equal torstep at each
time instant, whose length is greater than or equal to that of
any such greedy pursuer paths. Select a pointP ′

1 betweenA
and B such that‖p[tk] − P ′

1‖ = rstep. Then select another
point P ′

2 on betweenC and D such that‖P ′
1 − P ′

2‖ = rstep.
Of the two possible points, select that point which is farther
from p[tk] as P ′

2. Selecting oddP ′
i ’s betweenA and B and

evenP ′
i ’s betweenA and B until it is not possible to select

any more of theP ′
i ’s on segmentsAB and CD. This is

illustrated in Figure 14. This construction leads to the property
that theX coordinates of theP ′

i ’s are smaller than those of the
correspondingPi’s. Thus the number ofP ′

i ’s is greater than or
equal to the number ofPi’s. Thus, the pathp[tk]−P ′

1−· · ·−P ′
5

has its length at least equal to that ofp[tk]−P1−· · ·−P5. Since
the length of segmentAB is Lcone, the number of steps of
such a path is at most equal toLcone divided by the difference
in X coordinates of any two consecutiveP ′

i ’s, i.e., ⌈ Lcone√
3

2
rstep

⌉.
SinceQ has a finite diameter, there can be at most⌈diam(Q)

Lcone
⌉

cone sectors in any cone sector sequence. Thus, the upper
bound (13) is established.

We now state two additional results needed to prove Theo-
rem III.3.

Proposition IV.5 (Maximum evasion angle) If the pursuer
uses theGREEDY strategy and if(κ2 − 1)r2

step≥ s2[t], where
s[t] = ‖p[t] − e[t]‖, then define

βmax[t] := arccos

(

(κ2 − 1)r2
step− s2[t]

2s[t]rstep

)

. (14)

Lcone

rstep

p[tk] P3

P4

X

Y

P1

C

BP ′
5P ′

3
P ′

1

P ′
4

P ′
2D

A

P2

rstep

2P5

Fig. 14. Upper bound on the number of steps a pursuer can be inside a
cone sector. The cone sectorCk,0 is illustrated here. The dotted path shows
a hypothetical pursuer path that takes the maximum number ofsteps before
leaving a cone sector.

If at some timet, β[t] ≥ βmax[t], then the pursuer moves
towardse[t + 1] and traps the evader.

This result is obtained by applying the cosine rule to
△p[t]e[t]e[t+1], where the notation△ABC stands for triangle
formed by pointsA, B andC, as shown in Figure 15. .

κrstep

e[t]

e[t + 1]

p[t] s[t]

rstep

βmax[t]

Fig. 15. Constraint on maximum evasion angle. The dotted circle represent
the evader’s motion disc. The circle centered atp[t] (shown partially here) is
the pursuer’s sensing range.

Lemma IV.6 (Constraint on maximum evasion angle)
For the evader to move out of a cone sector sequence
Ck, described in Definition IV.3, there exists a time instant
t ∈ [tk, tk+1[ (ref. Definition IV.3) such that

|β[t]| >
θ

2N∗ =: βc, (15)

whereN∗ is defined in Proposition IV.4.

Proof: For the evader to move out of the cone sector
sequenceCk, the sum of the angles of deviation for the pursuer
must exceed half of the cone angleθ, i.e.,

tk+1∑

t=tk

|α[t]| >
θ

2
.

Geometrically, this condition implies that the angle between
the vectorse[tk+1]−p[tk+1] ande[tk]−p[tk] must be at least
θ
2 . This is illustrated in Figure 16. From Proposition IV.2, it
implies that

tk+1∑

t=tk

|β[t]| >
θ

2
.

Equation (15) now follows from the fact thattk+1− tk ≤ N∗,
for every k, since there exists a maximum number of time
stepsN∗ for which the evader can remain inside any cone
sector sequence, as derived in Proposition IV.4.
We are now ready to prove Theorem III.3.
Proof of Theorem III.3:Two cases need to be considered:



9

p[tk + 2]

β[tk + 1]

p[tk] e[tk]

e[tk + 1]

e[tk + 2]

α[tk] β[tk]

Ck

α[tk + 1]

p[tk + 1]

Fig. 16. Illustrating Lemma IV.6. This is a case of the evadermoving out
of the cone sector sequenceCk by moving out ofCk,0.

(i) Evader does not move out of a cone sector sequence:
Capture follows from the construction of the cone sector
sequence and from Proposition IV.4.

(ii) Evader moves out of a cone sector sequence: In this
case, we seek to show that the evader cannot keep moving
out of an arbitrarily large number of cone sector sequences.If
the evader leaves the cone sector sequenceCk, then for some
τ ∈ {tk, . . . , tk+1 − 1}, β[τ ] > βc. Applying the cosine rule
to △p[τ ]e[τ ]e[τ + 1], we obtain

s2[τ +1] = r2
step+(s[τ ]−rstep)

2+2rstep(s[τ ]−rstep) cosβ[τ ],

=⇒ s2[τ ]−s2[τ +1] = 2rstep(s[τ ]−rstep)(1−cosβ[τ ]).

Using equation (15) and since

s[τ ] + s[τ + 1] ≤ 2κrstep,

we obtain

s[τ +1]− rstep≤
(

1 − (1 − cos( θ
2N∗ ))

κ

)

(s[τ ]− rstep). (16)

Defining χk := s[tk] − rstep, we conclude that

χk+1 ≤ s[τ + 1] − rstep,

≤
(

1 − (1 − cos( θ
2N∗ ))

κ

)

(s[τ ] − rstep),

≤
(

1 − (1 − cos( θ
2N∗ ))

κ

)

χk, (17)

where the first and third inequalities follow from the fact that
distances[t] is non-increasing in the GREEDY strategy and
the second inequality follows from equation (16). Recall that
κ > 1 by assumption and hence the term in the parenthesis is
positive and strictly less than1. Thus,χk → 0 asymptotically,
i.e., the distance between the pursuer and evader tends torstep

asymptotically. Moreover, forκ > 2, the distance reduces to
(κ − 1)rstep after a finite time. Thus, the motion disc of the
evader will become completely contained within the sensing
disc of the pursuer. Hence, the result follows.

The case ofκ = 2: We have seen that the distances[t]
between the pursuer and evader tends asymptotically torstep.
From Proposition IV.5, we obtain that ass[t] → rstep, the angle
βmax → 0. So, after some finite time,

βmax <
θ

2N∗ =: βc.

Thus, the evader becomes confined to the present cone sector
sequence according to Lemma IV.6 and from Proposition IV.4,

and we can see from part (i) of this proof that the pursuer traps
the evader within its sensing radius.

If κ < 2: We have seen that at each time stept, there is
a maximum valueβmax[t] of the evasion angleβ[t], so that
the evader’s next stepe[t + 1] is not in the pursuer’s sensing
disc centered atp[t]. This is shown in Figure 17. The key
idea of this part of the proof is that if we ensure that for all
subsequent times after a certain timet∗, βmax[t] is less than
the minimum valueβc (cf. Lemma IV.6) needed for the evader
to leave a cone sector sequence, then the evader is forced
to remain inside a final cone sector sequence and trapping
follows from part (i). In previous cases, we have seen that the

e′[t∗]

γ(1 + δ)

rstep

γ

κrstep

rstep

e′[t∗ + 1]

e[t∗ + 1]

e[t∗]p[t∗]

Fig. 17. Illustrating parameters in Equation (18).e′[t∗] is a point such that
‖p[t∗]− e′[t∗]‖ = rstep. γ is the value of the maximum evasion angle if the
evader were ate′[t∗]. The circle of radiusκrstep around the pursuer (shown
partially here) is the pursuer’s sensing disc which the dotted circle around
e[t∗] is the evader’s motion disc.

GREEDY strategy reduces the distances[t] asymptotically to
rstep. Thus after a finite timet∗, s[t∗] attains a value such that
the maximum evasion angle is less than or equal to(1 + δ)γ,
whereγ is the maximum evasion angle if the evader is ate′[t∗],
which satisfies‖p[t∗]−e′[t∗]‖ = rstep andδ is a given positive
number. At this time instanttfinal, let the pursuer construct a
new cone sector sequence,Cfinal. So, if

(1 + δ)γN∗ =
θ

2
, (18)

where N∗ and θ are defined in Proposition IV.4 and in
the definition of a cone respectively, then for someτ ∈
{tfinal, . . . , tfinal +N∗}, β[τ ] ≥ (1+ δ)γ = βc for the evader to
leaveCfinal. This means that the evader is forced to step inside
the sensing disc of the pursuer or to remain inside the final
coneCfinal. In both cases, the pursuer traps the evader within
its sensing radius. From equation (18),

γ <
θ

2N∗ = βc.

Applying the cosine rule to△p[t]e′[t]e′[t + 1],

κ =
√

2 + 2 cosγ >
√

2 + 2 cosβc.

Thus, we have shown that ifκ >
√

2 + 2 cosβc, then the
pursuer’s GREEDY strategy guarantees that the evader is
trapped.

Computing an upper bound on the trapping time: We have
seen that when the pursuer uses the GREEDY strategy, the
evader cannot leave an arbitrarily large number of cone sector
sequences. Thus, to compute an upper bound on the trapping
time, we compute an upper bound on the number of cone
sector sequences that the evader can leave. We have seen
that using the GREEDY strategy,βmax ≤ βc after finite time.
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From (14), we can determine that distancesc for which
βmax = βc, so that subsequently, the evader is confined to
the final cone sequence:

sc = (

√

κ2 − sin2 βc − cosβc)rstep.

If k is the final cone sequence index, then using equation (17),

sc − rstep≤ χk ≤ λχk−1 ≤ · · · ≤ λk(κ − 1)rstep,

whereλ = 1− 1−cos( θ
2N∗ )

κ and the worst-caseχ0 = (κ−1)rstep.
Upon simplifying, we obtain

k ≤









log

(√
κ2−sin2 βc−cos βc−1

κ−1

)

log(λ)









The result now follows from the fact that for the case ofκ < 2,
we construct an extra final cone sequence and the maximum
number of steps in each cone sequence can be at mostN∗.
The asymptotic result follows by routine simplifications.
Proof of Proposition III.4:We prove this result by determining
a set of initial conditions and an evader strategy that leadsto
evasion. Suppose at timet, the pursuer and the evader are on
a circleΩ with radiusρ =

rstep√
4−κ2

, such that‖e[t] − p[t]‖ =
rstep as shown in Figure 3. The evader is not trapped as its
motion disc is not completely contained inside the pursuer’s
sensing disc. An evader strategy is to choose a pointe[t + 1]
on Ω such that‖e[t] − e[t + 1]‖ = rstep. Sinceρ =

rstep√
4−κ2

,
e[t+1] lies outside the pursuer’s sensing disc before its move
at time t + 1. By the GREEDY strategy,p[t + 1] = e[t]. Thus,
‖e[t + 1] − p[t + 1]‖ = rstep and the evader can avoid getting
trapped.

B. Multiple pursuer problem

We first state a property of the effective length of the
trapping chain.

Proposition IV.7 The effective length of the trapping chain
satisfies

2(
√

4κ2 − 25(N − 3) − πκ)

π
<

l

rstep
<
√

4κ2 − 25N − 2κ.

Proof: The left hand side of the inequality follows from
the fact that the circumference of the circle passing through
the vertices of the trapping chain is greater than the sum of the
distances of neighboring vertices. The right hand side follows
from repeated use of the triangle inequality.
Proof of Theorem III.7:Let the evader be located at a point
Ye ∈ G and let its distance from the edgeAB bey, as shown
in Figure 18. Note that the distance of the evader from the
edgeAD does not play any role in what follows. The main
idea behind this proof is as follows:Ye would lie in the shaded
region in Figure 18 ifl0+2rsens< y or l0−2rsens> y. This is
equivalent to choosing a length equal to the effective length l
of the trapping chain from a total lengthl+4rsens, if we let l0
take a uniformly random value from[−2rsens, l+2rsens]. Thus,
the probability of success for the pursuers is at least the ratio
of l to l + 4rsens.

To be more specific, let the spatial probability density
of the Y coordinate of the evader insideG be p(y). Thus,
∫ diamG
0 p(y)dy = 1. The probability that the evader is detected

inside the capture regionS is given by

P (e ∈ S) =

∫ l+2rsens

−2rsens

P (e ∈ S|l0 = k)P (l0 = k)dl0,

wherek ∈ [−2rsens, l+2rsens]. Assuming the pursuers have no
information about the evader’s location insideG, l0 is chosen
uniformly randomly from[−2rsens, l+2rsens]. Hence, we have

P (e ∈S) ≥
∫ l+2rsens

−2rsens

P (e ∈ S|l0 = k)
1

l + 4rsens
dl0

=
1

l + 4rsens

∫ l+2rsens

−2rsens

( n−1∑

j=0

∫ l0+2rsens+j(l+2rsens)+l

l0+2rsens+j(l+2rsens)

p(y)dy

+

∫ diamG

l0+2rsens+n(l+4rsens)+l

p(y)dy
)

dl0,

where n := ⌈diamG/(l + 4rsens)⌉ is the number of times
the pursuers sweep to clear the entire environment. Since the
variablesl0 andy are independent (cf. Figure 19 for the region
of integration), changing the order of integration gives

P (e ∈ S) ≥ 1

l + 4rsens

n−1∑

j=0

∫ (j+1)(l0+4rsens)

j(l0+4rsens)

p(y)f(y, l)dy

=
1

l + 4rsens

∫ n(l0+4rsens)

0

p(y)f(y, l)dy,

where

f(y, l) :=

{∫ y−2rsens

−2rsens
dl0 +

∫ l+2rsens

y+2rsens
dl0, for y ≤ l,

∫ y−2rsens

y−2rsens−l
dl0, otherwise.

In both cases,f(y, l) = l. Thus, the minimum probability
of success isl/(l + 4rsens), since

∫ n(l0+4rsens)

0
p(y)dy =

∫ diamG
0 p(y)dy +

∫ n(l0+4rsens)

diamG p(y)dy, and p(y) = 0 outside
of G. The second inequality in part (i) follows by use of the
left hand inequality in Proposition IV.7. The reason why this is
a lower bound on the required probability is that if the pursuers
had some information about the evader’s location, then they
could choosel0 randomly from a smaller interval than the
current one and thus increase the probability of detecting the
evader in the capture region.

From the SWEEP strategy, the width of each strip swept
is l + 4rsens. So the maximum number of strips after which
the sweep phase terminates is⌈diam(G)

l+4rsens
⌉. It takes at most

diam(G)+2(l+2rsens)
rstep

time steps for the pursuers to clear a strip
followed by aligning themselves parallel to the adjacent strip.
The result now follows using Proposition IV.7.

To prove Theorem III.9, we first establish the following
properties of a trapping chain. In what follows, given points
a, b, c ∈ R

2, the notationdist(a, bc) is the distance of pointa
from the linebc.

Lemma IV.8 (Trapping chain properties) If e[t] ∈ S[t],
then the following statements hold:
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l

l0

diam(G)

2rsensYe
y

A B

CD

Fig. 18. Illustrating the proof of Theorem III.7.

(−2rsens, 0) (l + 2rsens, 0)

(l + 2rsens, l + 4rsens)

(2rsens, 0)

(0, 0)

l

l0

y

Fig. 19. The region of integration in determiningP (e ∈ S) in the proof of
Theorem III.7. Fix a value ofl0 in the interval(−2rsens, l + 2rsens) to get
the values ofy that correspond toP (e ∈ S).

(i) If dist(e[t], pj [t]pj+1[t]) > 3
2rstep, for all j ∈

{1, . . . , N − 1}, then the evader cannot step out-
side Co{p1[t], . . . , pN [t]} at time t + 1 by crossing
pj [t]pj+1[t].

(ii) If dist(e[t], pj [t]pj+1[t]) ≤ 3
2rstep or dist(e[t +

1], pj[t]pj+1[t]) ≤ 3
2rstep, for somej ∈ {1, . . . , N − 1},

then the evader istrapped within the sensing radiiof
pursuerpj or pj+1 or of bothpj and pj+1.

(iii) There exists aφ > 0, independent ofN , such
that for every pointq ∈ ⋃

j∈{3,...,⌊N
2
⌋+1} Bpj

(rsens) ∩
C̊o{p2, . . . , pN−1},

∠qp2pN−1 > φ,

Proof: Parts (i) and (ii) follow trivially from the defini-
tions of trapping within sensing radii and from the construction
of the trapping chain. For part (iii), we can see that for
j∗ = ⌊N

2 ⌋ + 1 if q (in the specified set) is the point of
intersection of the tangent fromp2 to the sensing disc ofpj∗ ,
then the angle∠qp2pN−1 is minimized. This follows from
the fact that the linep2pj∗ is parallel to p3 − pj∗−1. This
angle is minimum whenN = 5. Thus, given aκ ≥ 4, from
trigonometry, we obtain

φ =
π

4
− arctan

( κ√
3κ2 − 25

)

.

The use of the CIRCUMCENTER strategy in the pursuit
phase and the geometry of the trapping chain gives us the
following result.

Lemma IV.9 If the evader is trapped within the union of
the sensing radii of pursuers at timettrap, for every j ∈
{1, . . . , N − 1}, then

dist(e[ttrap], pj [ttrap]pj+1[ttrap]) >
rstep

2
.

Proof: Let the evader be trapped at timettrap in the
sensing radii of the pursuers. From part (ii) of Lemma IV.8,
at time ttrap− 1 and for everyj ∈ {1, . . . , N − 1},

dist(e[ttrap− 1], pj [ttrap− 1]pj+1[ttrap− 1]) >
3

2
rstep.

Thus, immaterial of where the evader decides to step, its
distance frompj [ttrap − 1]pj+1[ttrap − 1] is greater thanrstep

2 .
Two cases are possible:

(a) the evader steps inside the sensing disc of some pursuer
pj : There are two further possibilities. Ifdist(e[ttrap], pj[ttrap−
1]pj+1[ttrap − 1]) ≤ 3

2rstep, then the evader is trapped by
part (ii) of Lemma IV.8 and the present lemma is proven.
Else, we havedist(e[ttrap], pj [ttrap−1]pj+1[ttrap−1]) > 3

2rstep.
Now, pj uses part (ii) of the CIRCUMCENTER strategy. Even
in this case,dist(e[ttrap], pj [ttrap]pj+1[ttrap]) >

rstep

2 , for every
j ∈ {1, . . . , N − 1}.

(b) the evader steps outside the sensing disc of every
pursuer: In a trapping chain, the overlap between the sensing
discs of any two neighboring pursuers has the property that
length of the common chord of these discs is greater than
3
2rstep. This means that even if any two neighboring pursuers
pj andpj+1 happen to move parallel to each other, we have
dist(e[ttrap], pj[ttrap]pj+1[ttrap]) >

rstep

2 .
We now present the proof of Theorem III.9.

Proof of Theorem III.9:
We first look at a case in which

dist(e[tsweep], pj [tsweep]pj+1[tsweep]) ≤ 3
2rstep for some

j ∈ {1, . . . , N −1}. In this case, the evader is already trapped
within the sensing radii of the pursuers, from part (ii) of
Lemma IV.8 and the result holds.

Now let dist(e[tsweep], pj [tsweep]pj+1[tsweep]) > 3
2rstep, for

everyj ∈ {1, . . . , N −1}. There are two possibilities: ife[t+
1] ∈ Se[t], for any t ≥ tsweep, then there is a pursuerpj for
which ye[t + 1] = e[t + 1]. This pursuer uses part (ii) of
the CIRCUMCENTER strategy and the evader is trapped within
the sensing radius ofpj . Part (iii) of the result follows using
Lemma IV.9.

So, let e[tsweep+ 1] /∈ S[tsweep]. Now, the pursuers com-
pute the circumcenterO of △p2[tsweep]e[tsweep]pN−1[tsweep].
Lemma IV.8 implies that the evader cannot step out of the
pursuers’ convex hull by crossing linepj [t]pj+1[t], for any
j ∈ {1, . . . , N − 1}. Thus, it suffices to show that the
evader cannot leave the pursuers’ convex hull by crossing line
p1[t]pN [t]. In fact, we show that at the end of every pursuer
move, the evader remains on the same side ofp2pN−1 until
it gets trapped. We argue this as follows. As illustrated in
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Figure 20, any point on linesp2[tsweep]O andpN−1[tsweep]O is
reached faster byp2 andpN−1 respectively than by the evader.
Thus, the motion of the evader is confined to the convex hull of
{O, p2, . . . , pN−1}, which reduces to the pointO in a number
of time steps upper bounded by

max
j∈{2,...,N−1}

⌈‖pj[tsweep] − O‖
rstep

⌉

,

which is essentially the time taken by the furthest pursuer to
reachO. Thus,

ttrap ≤
R + l + 2κrstep

rstep
,

where R denotes the circumradius of
△p2[tsweep]e[tsweep]pN−1[tsweep]. From elementary geometry,
at time tsweepwe have

R =
‖p2 − e‖‖pN−1 − e‖‖p2 − pN−1‖

4 Area(△p2epN−1)
,

≤ l + 2κrstep

2 sin∠ep2pN−1
,

≤ l + 2κrstep

2 sinφ
,

where the second and third inequalities follow from part (iii)
of Lemma IV.8. Thus, part (ii) of the theorem follows from
the use of right hand inequality in Proposition IV.7.

e[tsweep]

p1[tsweep]p2[tsweep]
p3[tsweep]

p4[tsweep]

p5[tsweep]

p6[tsweep]

p7[tsweep]
p8[tsweep] p9[tsweep]

O

Fig. 20. A move of the CIRCUMCENTER strategy. The evader is confined
to the shaded region. The circles around the pursuers represent their sensing
discs.

To prove part (iii), recall that pursuersp1 and pN move
parallel top2 andpN−1, respectively. Since the evader remains
inside the convex hull of pursuersp2, . . . , pN−1, the distance
of the evader from linep1pN is always greater thanrstep

2 , until
it gets trapped. From this fact and Lemma IV.9, part (iii) now
follows.
Proof of Theorem III.10:Part (i) follows from the PLANES

strategy. Thus, once the evader is trapped, it remains trapped at
all successive time instants when the pursuers use the PLANES

strategy. Thus, the problem is reduced to one with unlimited
sensing for the pursuers. To show that the algorithm leads to
capture in finite time, we refer the reader to [5].

We now determine an upper bound on the time taken for
the capture phase in terms of the trapping chain parameters.
Referring back to the proof of correctness of the PLANES

strategy, since the evader is in the convex hull of the pursuers,
let vj denote vectors of magnituderstep in the direction of
pj [ttrap]− e[ttrap]. We now wish to seek a lower bound on the
radius ǫ of the largest circle centered at the origin that can
be inscribed inside the convex hull of the vectorsvj . This
is equivalent to determining what is the largest of the angles
∠pi[ttrap]e[ttrap]pj [ttrap]. Due to the property (11) and to the
fact that the distance between any two adjacent pursuers in the
trapping chain is non-increasing during the CIRCUMCENTER

strategy, the angle∠pi[ttrap]e[ttrap]pj [ttrap] is the greatest when
i and j are adjacent and the evader is equidistant from both
of them and at a distance ofrstep

2 from pi[ttrap]pj [ttrap]. This

is shown in Figure 21. This gives,ǫ = rstep
rstep/2
κrstep

=
rstep

2κ .
Now, following [5], we observe that there exist three pursuers
which contain the evader within their convex hull at the end
of the pursuit phase, such that the sum of the distances of
these pursuers to the evader decreases by at leastǫ

3 at the end
of every pursuer move. The result now follows from the fact
that the distance between any one of the three pursuers and the
evader is at mostl+2κrstepat the end of the pursuit phase and
the use of the right hand side inequality in Proposition IV.7.

e

rstep

2

pjpi

Fig. 21. Illustrating proof of Theorem III.10. Given the evader to be at a dis-
tance greater than

rstep
2

from the linepipj , the angle∠pi[ttrap]e[ttrap]pj [ttrap]
is the greatest when the evader is equidistant from both of them

V. SIMULATION RESULTS

We now present simulation studies to investigate the ro-
bustness of the algorithms to sensing errors. We study the
performance of the algorithms in several cases such as differ-
ent sensing to stepping radius ratio and faster evader. We also
study the case of different number of pursuers in the multiple
pursuer problem. All simulations were run using MATLABR©.

In the context of sensing errors, we assume two types of
error models:

Gaussian errors: We assume zero-mean additive Gaussian
measurement errors in the position of the evader with a
standard deviation given by

σj [t] = ǫ‖pj[t] − e[t]‖,
for some constantǫ ≥ 0. This means that the uncertainty in
the location of the evader increases with its distance from a
pursuer. The evader is defined to be captured if the probability
of the evader being inside the motion disc of the pursuer before
the pursuer’s move is more than a certain threshold. In other
words, for somet and for some pursuerpj ,

Bσj [t](y
p
bef[t]) ⊂ Brstep(pj [t − 1]),

whereBσj [t](y
p
bef[t]) denotes the circular region of radiusσj [t]

centered atyp
bef[t].
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Non-Gaussian errors: The measured distance is given by
(1+ǫ∗)‖pj [t]−e[t]‖, whereǫ∗ is a random variable uniformly
distributed in the interval[−ǫ, ǫ], whereǫ ≥ 0 is the specified
error parameter. With respect to angular measurements, ifθa

is the actual angular location of the evader with respect to a
local reference frame of a pursuer, then the measured angular
location is given byθa + ǫθ, whereǫθ is a random variable
uniformly distributed in the interval[−∆θ, ∆θ], where the
value of∆θ was chosen to be1 degree. The evader is captured
in this model ifyp

bef[t] ∈ Brstep(pj [t − 1]).

A. Single pursuer problem

Under the considered noisy sensor models:
• The SWEEP strategy remains unchanged. It terminates

when an evader measurement is available.
• For the GREEDY and LION strategies, the pursuer uses

the noisy measurements of the evader position instead of
the true positione[t] to compute its next position.

For the evader’s motion, we assume that it moves away from
the pursuer with some randomization, while avoiding the
boundary. Specifically,

• if the evader is not close to the boundary of the environ-
ment, then it chooses to move to a point on its motion
circle, selected uniformly randomly in a sector with angle
0.2 radians. This sector is placed symmetrically along the
line e[t]p[t] and away from the pursuer.

• If the boundary is visible to the evader, then it chooses
to move to a pointe[t + 1] on its motion circle such that
∠e[t + 1]e[t]p[t] = π − 0.2. Of the two points possible,
the evader chooses that point which is further away from
the boundary. In other words, when the evader reaches the
boundary, it chooses to move to a point that is away from
the pursuer as well as not very close to the boundary.

For our simulations, the environment is a circle with diameter
40 units. We assumeκ = 5 units andrstep = 1 unit. The initial
position of the evader was chosen uniformly randomly in the
environment. An upper limit of2, 000 time steps was set to
decide whether the strategy terminated in a success.

The following is a summary of our findings:
(i) Performance of the strategy with noisy measurements:

The plots of probability of success of the strategy and average
capture times after detection (given that the strategy terminates
with capture) for both noise models versus the respective error
parametersǫ are shown in Figure 22. We observe a similar
trend in the performance of the strategy in both noise models.

(ii) Different sensing to stepping radius ratios: We repeated
the simulations for the cases of the ratio of sensing to stepping
ratioκ = 7 andκ = 10. We present the variation of probability
of success in the Gaussian noise model in Figure 23.

(iii) Faster evader: We repeated the simulations for the case
of faster evader. Assuming no noise, we present the variation
of the probability of success in the top part of Figure 24. We
observe that when the evader is at least3/2 times that of the
pursuer, the proposed pursuer strategy is not efficient.

B. Multiple pursuer problem

Under the considered noise models:
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Fig. 22. Effect of measurement noise in the single pursuer problem. For a
particular evader strategy, we study how the capture probability and average
capture time given that the strategy succeeds, vary with thenoise parameterǫ,
under Gaussian and Non-gaussian error models. In the top figure, an interval
of ±0.1 (not shown to preserve clarity) about the probability estimates is

the 95% confidence interval given by
h

P (ǫ) − 2
q

0.25
n

, P (ǫ) + 2
q

0.25
n

i

,
wheren = 100 is the number of trials [23]. In the bottom figure, the vertical
bars give a95% confidence interval about the average capture timeT (ǫ)

which is given by
h

T (ǫ) − 2
q

SD(ǫ)
nP (ǫ)

, T (ǫ) + 2
q

SD(ǫ)
nP (ǫ)

i

, whereSD(ǫ) is

the standard deviation in the capture time,P (ǫ) is the estimated probability
of success andn = 100 is the number of trials [23].
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Fig. 23. Effect of varying the sensing to stepping radius ratio κ in the single
pursuer problem. For a particular evader strategy, we studyhow the capture
probability varies forκ = 7 and κ = 10 with the noise parameterǫ, under
Gaussian noise model. The error bars are in accordance with Figure 22.

• The SWEEP strategy remains unchanged. It terminates
when an evader measurement is available.

• For the CIRCUMCENTER and PLANES strategies, the
team of pursuers use the average of the available evader
measurements̃yt-1[t−1] andỹt-1[t], to compute their next
positions.

For the sake of simulations, we assumeN = 7 pursuers
with κ = 5 units andrstep = 1 unit. We assume a square field
of edge length100 units, where the evader is initially placed
at a uniformly randomly selected location. Upon detection,we
assume that the evader moves away from the closest pursuer
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Fig. 24. Performance of Sweep-Pursuit-Capture strategy against a faster
evader. For a particular evader strategy, we study how the capture probability
varies for higher evader speeds, assuming no measurement noise. The top
figure presents the single pursuer case and the bottom figure presents the
multiple pursuer case. The error bars are in accordance withFigure 22.

with some randomization. Specifically, it moves to a point on
its motion circle, selected uniformly randomly in a sector of
angle equal to0.2 radians. This sector has its vertex ate[t] and
angle bisector parallel to the linee[tsweep]O, wheretsweepis the
time when the evader is detected andO is the circumcenter of
the trianglep2[tsweep], p6[tsweep] and e[tsweep]. We study how
the average capture time after detection varies withǫ. An upper
limit of 1000 time steps was set to decide whether the strategy
terminated in a failure.

The following is a summary of our findings:
(i) Performance of the strategy with noisy measurements:

The plots of probability of success of the strategy and average
capture times after detection (given that the strategy terminates
with capture) for both noise models versus the respective error
parametersǫ are shown in Figure 25. We observe a similar
trend in the performance of the strategy in both noise models.

(ii) Different number of pursuers: We repeated the simula-
tions for the cases of the number of pursuersN = 10 and
N = 15. We present the variation of probability of success in
the Gaussian noise model in Figure 26.

(iii) Faster evader: We repeated the simulations for the case
of faster evader. Assuming no noise, we present the variation
of the probability of success in the bottom part of Figure 24.
We observe that when the evader is at least1.8 times that of
the pursuers, the proposed pursuer strategy is not efficient.

VI. B IOLOGICAL INTERPRETATIONS

Our analysis in the previous sections can shed light on the
trade-offs that predators face when deciding upon the group
size. Based on our results from Section III-B, we now study
how the group size of the pursuers varies with the evader
availability in the multiple pursuer problem.

For simplicity, we assume a square field where the evader
is initially located and denote byδ := 1

diam2(G)
the evader

density. From the results in Section III-B, an upper bound on
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Fig. 25. Effect of measurement noise in the multiple pursuerproblem. For
a particular evader strategy, we study how the capture probability (top figure)
and average capture time (bottom figure) given that the strategy succeeds, vary
with the noise parameterǫ, under Gaussian and Non-gaussian error models.
The error bars are in accordance with Figure 22.
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Fig. 26. Effect of varying the number of pursuersN in the multiple pursuer
problem. For a particular evader strategy, we study how the capture probability
varies forN = 10 andN = 15 with the noise parameterǫ, under Gaussian
noise model. The error bars are in accordance with Figure 22.

the total time taken by the pursuers in all three phases of the
strategy is given by

1

δ(aN + b)
+

cN√
δ(aN + b)

+ kN,

wherea := 2r2
step

√
4κ2 − 25/π, b := (2πκ−6

√
4κ2 − 25)/π,

c := 2rstep
√

4κ2 − 25 and k :=
√

4κ2 − 25(1 + 1/ sinφ) +
18κ

√
4κ2 − 25 are constants independent of the number of

predatorsN or the evader densityδ.
From part (i) of Theorem III.7, we observe that when all

other variables are kept constant, the lower bound on suc-
cessful detection probability of the SWEEP strategy increases
with N . However, a higherN results into a greater time to
capture the evader. This suggests a trade-off on the group size
N which we analyze as follows.

Let ν denote the nutritional content of the evader. We
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quantify the energy spent by each pursuer as the time taken
to capture the evader. The energy gain from the pursuit is
quantified as the amount of nutrition each participating pursuer
receives from the evader. For a self-sustaining pursuit, wemust
have that the energy gained by each pursuer is at least equal
to the energy spent during the hunt. Thus,

ν

N
≥ 1

δ(aN + b)
+

cN√
δ(aN + b)

+ kN.

From this relation, we observe that for a given value ofδ,
there exists an upper limit on the number of pursuers in the
group for which it is advantageous for the pursuers to engage
in a pursuit with the prospect of gaining energy. A plot of the
upper limit on the group sizeN versus the evader densityδ
is shown in Figure 27.

This analysis shows that for higher values ofδ, a larger
number of pursuers can be accommodated in the trapping
chain. This is consistent with observations in the biology
literature by Caraco and Wolf [24] that have reported higher
group size in foraging lions during the wet season (prey
abundance), than in the dry season, (prey scarcity). Further,
from our analysis, it also follows that for a given evader
density, the higher the prey nutrition valueν, the higher is
the upper limit on the number of pursuers in the trapping
chain. This is consistent with the observations reported by
Griffiths [25] regarding how the size of hunting packs relate
to the size of the prey relative to that of the predators.
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Fig. 27. Plot of maximum group size of pursuers that can be sustained versus
the evader densityδ, for κ = 5, rstep= 1, ν = 10000.

VII. C ONCLUSIONS ANDFUTURE DIRECTIONS

We have addressed discrete-time pursuit-evasion problems
in the plane with sensing capabilities restricted to a finitedisc.
We consider two variants of the pursuit-evasion in discrete-
time. The first involves a single pursuer and an evader in a
bounded convex environment. The second is a formation de-
sign problem for multiple communicating pursuers to capture a
single evader in a boundaryless environment. In both problems,
the evader is initially located inside a bounded subset of the

environment and moves only when detected. We propose a
Sweep-Pursuit-Capture strategy for both problems.

In the first problem, we give sufficient conditions on the
range of values taken by the ratio of sensing to stepping radius
of the players so that the GREEDY pursuer strategy of moving
towards the last-sensed evader position leads to the evader
being trapped within the pursuer’s sensing disc and finally
to capture. We also give conditions under which there exist
locations from which the evader can escape. In the second
problem, we have shown that the pursuers capture the evader
with a certain probability that is independent of the initial
evader location in a bounded region. We give novel upper
bounds on the total time taken to capture for both problems.
We also present simulation studies that suggest robustnesswith
respect to sensing errors. Finally, on the basis of the obtained
upper bound on the total capture time, we provide an upper
bound on the group size of the pursuers for which the pursuit
is advantageous from the point of view of gaining energy.
The conclusions based on our analysis are consistent with
observations reported in ecology literature.

In the future, it would be interesting to study the effects
of communication losses or errors in the multiple pursuer
problem. Another interesting direction for future research
would be to consider more sophisticated sensing models for
the players.
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